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Abstract:

In this paper, we presen! a mathematical foundation, inchtding  a convergence analysis, for

cascading architecture neural net works. From this, a mathematical foundation for the cascade

correlation learning algorithm can also be found, Furthermore, it becomes apparent that the cascade

correlation scheme IS a special case of an efficient hardware learning algorithm called  Cascade Error

Projection. Our atia[ysis also shows that the convergence of the cascade architecture neural nenvork  is

assured because it satisfies a Liapunov criterion, in an added hidden unit domain rather than in the time

domain Moreover, this analysis ako aI[ows us to predict that other methods (such as the conjugate

gradient descent and Newlon’s second order) are good candidates as additional learning techniques.

The $na[  choice of a learning technique depends cm the constraints of the problems (e.g., speed,

performance, and hardware  implementation) which may make one technique much more suitab[e than

others. Simulation results help to validate the proposed CEP learning algorithm developed in this paper.

1. Introduction

Many ill-defined problems in areas such as pattern recognition, pattern

classification, vision, and speech recognition require practical solutions.

these problems are too complex to be solved by linear techniques thus

methods, such as neural network methods are used. Usually, the practical

neural network method is closely related to the paradigm used to train

Typically,

non-linear

value of a

the neural

network. Currently, there are several neuromophic  learning paradigms reported in the



literature [Albus 1971, Cohen et al. 1983, Duong 1995a, I?ahlman et aL. 1990, Fukushirna  et al. 1982,

}Iinton  et al. 1984, Hopfield 1982, Jackson 1988, Kohonen 1989, Kosko 1988, Rosenblatt  1958,

Rumelhart,  et al. 1986, Widrow 1962] which are wide] y used. The majority  of these are

supervised learning techniques, the Error Backpropagation  (EBP)[ Rumelhart,  et al. 1986]

learning algorithm being one of the most popular. In real world applications, EBP

often suffers convergence problems [Fahhnan, 1 ebiere,  1990]. Recently, a technique called

“cascade correlation” (CC)[ Fahlman,  Lebiere.  1990. Hoehfeld,  Fahlrnan 1992 ] has showed

encouraging results as a learning algorithm. This method appears to be fast and

reliable, but thus a only empirical studies of’ its convergence properties have been

provided. A mathematical foundation for this algorithm has been needed so that from

this a convergence analysis can be developed. Such an analysis is herein provided for a

learning algorithm, called cascade error projection (CEP), of which cascade correlation

is a special case. CEP is a simple learning method using a one-layer perception

approach followed by a deterministic calculation for another layer. This s imple

procedure offers a very fast, reliable, and implementable learning algorithm in

hardware. The architecture for CEP is given in Figure  1.

Shaded squares and circles indicate frozen weights; squares indicate calculated weights,

and circles indicate learned weights. The analysis is based only on the set of weights that

is connected to the new hidden unit (n+]). in this case, only the blank squares and

circles must be determined in order to decrease the energy level.
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Figure 1. ‘Me architecture of cascade error  projection includes inputs,
hidden units, and output units. The shaded circles or squares indicate the
learned or calculated weight set which has already been computed and
frozen. A circle indicates that perception learning is used to obtain the
weight, and a square indicates that the weight is deterministically
calculated.

In this following sections of this paper an analysis of the structure and a

learning technique is presented. First, a difference energy function AE between layers n

and (n+- 1) is introduced. This function contains two sets of variables: (1) the set of

weights between the input (including previously expanded inputs) and the current

hidden unit, namely W,,;  (2) the set of weights between the current hidden unit and the

output  unit, name]y ~h,,. These two sets of variables are treated sequentially (not

simultaneously). First, the difference energy  function is maximized with respect to Wk.

thus obtaining max~h,, (AE).  Note that, the main,,, is a]so a function of ~<,.  We W’il]
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show that there exists a solution set Hjl, obtained from an affine space which

guarantees that the network reduces (or at least maintains constant) the present energy

level when the new hidden unit is added. Thus, we can conclude that the network

converges in the Liapunov sense as new units are added. From this we propose that the

solution which  is obtained in a non-linear space by learning techniques such as

gradient descent, conjugate gradient, correlatiorr, covariance  or Newton’s second order

may also be suitable. The problems that are used to simulate the CEP are 5- to 8-bit

parity problems.

II. STRUCTURE OF CASCADE ERROR PROJECTION

We start this section with a definition which will help to define

our neural network.

Z!?Z!@K

the general structure of

For any k ~ N, A~ is the set of all affine functions from ‘il?~ to ‘N, that is, the set of all

functions of the form A(X)= W’l’X + b where Wand X are vectors in ‘iRk,  and b e ‘0? is

a scalar.

lrI this paper, X corresponds to the input of the network and W corresponds to the

weight set which will vary with the dimension of the required cascade network. We

start with the neural  network in Figure  2 where we assume that the network contains n

hidden units. We also assume that the learning cannot be further improved that is, the

energy level cannot be further reduced with this structure. At this point, the new hidden

unit @+/)  is added to the network and we choose the new weights to further reduce the

energy level.
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Let E be the input space where Ec [-1,1]’, V be an output space where !Pc[-1,1]”’,  and

Q be a hidden output space where Q c[–I, 1]~. Thus, EXQC [–1,1]~+~ forms the input

space of the newly added hidden unit where N M the dimension of the input space, g is

the dimension of the expanded input space (N-@ is the dimension of the total input

space to the hidden unit n+l), and m is the dimension of the output space. Let us

define

fh:[-l,l]’’’x@+”+”  – 4 [ - 1 , 1 ]

fo:[-l,l]~+’+’xglN+’+’  ,y,

where 91 ‘+~ is the weight space of N+q dimensional real elements and similarly for

9?N+9+1 . The functions j~ and jO are sigmoidal  transfer functions which are defined

Other notation which we will use is defined as follows:

6P = 1P – o:(n) denotes the error between output element o and training pattern p with
00

target z and actual output o(n) where n indicates that the output has n hidden units in the

network;

j’ ~ (n) denotes the output transfer function derivative with respect to net. of’ the output

element o and the training pattern p;

fip(n -I 1) denotes the function of hidden unit n~l and training pattern p;

XP denotes the input pattern p of vector X.
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Figure 2: Assume that there are (n+]) hidden units in the network and the
blank squares and circles are the weight components which determine the
weight values by learning or calculating.

Theorem 1: In the cascade architecture, the maximum energy reduction between

hidden unit n and@ 1) with respect to w~. is

where

“, Lhw’(n)f:(n + 1))2
z _p=l

‘“ ~{~:’’(l?)~”(n + 1 ) } ’
p=]

the energy function of the network is defined as

Proof

Let t: be the target output of unit o given input pattern p, and let the actual output of unit

o be given by:
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with

x: =

J

X: (dimension (7V+I)XI) denotes the original input vector of pattern p, and X; (n + 1)

(dimension (’n+l)xl)  denotes an expanded input vector with (n+l)  hidden units.

Now let

then

where .

ip(n + 1) =
“x:
.Xf(n + 1)1

f((j’ti))’ w,(i))= Apo + 1)

~P (j + 1) denotes the output of hidden unitj+l  with the input pattern p.

Let E(n) and E(n+l) be the energy levels of the network with n and n+l  hidden units,

respectively. The objective in learning is to make the reduction in energy from l?(n) to

E(n+l) as large as possible (ignoring the overlearning phenomenon). The ideal case

would  be

max{E(n) -- E(n + 1)} = max N3

From Appendix A, we have



AE = f{-w:j[f’:  jj’(n + 1)12 + %~[47’: f:b + 01}
(7=] p=] /J=l

(1)

From equation (1), the maximum AE with respect to who is

n, & g:(~)f;p(~)f:(n + 1))2 ~s:(ll)f’: (rz)j;(n +1)

z _p.1AE~~ =  —–-–—
_ fl=lwhere w~,, – ~-——-—-— (2)

0 =’  i{.v(n)f:(~ + 0}2 w: (~)j:(n + 1)]2
p=] [,=1

Theorem 2: There exists a weight  subspace  w’~,, (n + ~) of the ca~cu~ating  weight sPace~

from which the energy level is either reduced or remained the same as previous energy

level. These cascading sequential subspaces  ensure that the network converges in the

Liapunov sense.

Prooj7

From equation (2), we can rewrite:

Vwih(n  +1) E vlN+” n 3Who ~’N”’, AE 20

Therefore, the energy reduction is guaranteed or at worst the energy level is remained the

same as before.

Theorem 3: The maximum reduction energy with respected to Wih (n + 1) is:

Proof

From equation (2), it is:

(3)

“, & e:(~).fi’’(~)f:(n + 1)}2
z p=l

AE~&x =  —
‘=] ~{f:qn)f:(n+  1)}2

p=l



let 0 = AE~,x and in order to simplify this proof, we let f. be a summation from which

f:=], and m=l.

The maximum of@ with respected to YA( n + 1) is obtained as follows:

2{~&:f;(n  + 1)}{’jj:}{i[f:(n  +1)]2} - 2{[’&M% + 1)1’ ~(f:(n + l)}
Z@ /J=l p=l *. I— p=]— _  /1=1

— . .
4fh(n+l) {hfiw + 012}2f)=l

A sufficient condition for equation (2) to be maximum with respect to Wi~ (n +- 1) is

P

Theorem 4: There exists a solution set of Wi~ (n + 1 ) in subspace  which is obtained

affine space. This solution

the previous energy level.

Proofi

Let

H

&,

. . .

Hr= . . .
. . .
Ep

is almost always guaranteed to reduce the energy level

from

from



fi(n+ l)=

fi’(n+l)
. . . . . . . . . . .
. . . . . . . . . . .

I . . . . . . . . . . .

We can rewrite equation (2) in a matrix form as follows:

but

~,(n  + 1) = ~(l~h(n + 1))

(5)

(6)

with

(i’(n))””

. . . . . . . .

I= . . . . . . . .

. . . . . . . .

(ip(n))”,

From (5) and (6), we let ~~ (n + I)be a solution in affine space; then we have

~~h (n + ~) = ~h-’ (r)

Finally, then the solution is

w; (n + 1) = 1+ Fh-] (r)

where 1+ is the pseudo-inverse of 1.

In equation (7), the existence of ,; (n + 1) depends on the non-zero column matrix

1+ ~h-] (13. The rank of 1 is at least 1 because of the non-linear combination of all

(’7’)
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previous dimensions (i=l,n). At the same time, the error surface still exists (if it is zero,

then the energy is already zero). Therefore, the existence of ,;(H + 1) is almost always

guaranteed. As shown, the existence in affine space is demonstrated; however, we are

also interested in a non-linear space.

Let

F;(H  +1)= F{ I~;(n + 1)}

We should note that, F; (n + 1) is a non-zero column matrix. However, the null space in

non-linear space may be encountered where 1’7’Fh” (n + 1) = O. Therefore, from (4) the

precise inequality is:

r]’q’(~ + l) Fh*7’(7z + I)r, o
AE = ——— —rT (8)

From (8), there exists at least one solution obtained by the pseudo-inverse technique in

affine space. This solution also indicates the lower bound of the reduction in energy

that can be obtained by the hidden unit (n+ 1 ). Therefore, in non-linear space it can be

shown there always exists a solution space when the error surface is projected to the

new hidden unit for learning and the lower bound of energy reduction is

r“~;(~ + I)F;~”(71 + l)r———. To obtain the maximum energy reduction, a straight forward
r “r

approach is to obtain the closest match between Fh (n + 1) and r. One can use gradient

descent [Duong,  95], maxitnum  correlation/covariance  [Fahlman,  Lebiere.  1990], Newton’s

second order, or conjugate gradient techniques to obtain this. Finally,

AE(H) 20, with AE(n) = E(rz)–  E(n + 1).



In conclusion, we have shown that there cxlsts  a weight  set ~~ (n + 1), obtained

by the pseudo-inverse technique, which guarantees a reduction of the energy or at worst

results in the same energy when the hidden unit (n+ 1 ) is added. From a network

viewpoint, since the energy decreases or remains the same when the number of hidden

units increases; therefore the network converges (in the I,iapunov  sense).

III. DISCUSSION:

From this analysis, we will show the relationship to Cascade Correlation learning

algorithm, and then propose a new learning algorithm entitled “Cascade Error Projection”

which is more suitable for our focus-hardware implementable learning algorithm.

● Cascade Corre[alion:

In equation (2) with ~0’ = 1 and m=], it ‘becomes:

/7=1

In cascade correlation, to maximize the reduction energy (AE) by fine tuning the weight

set Wih (n + 1), the maximum correlation/covariance  between the previous known error

surface s:(n) and the additional

correlation [Fahlman,  Lebiere.  1990].

unknown hidden unit fhp(n + 1) is used in cascade

Then, w~O is obtained through perception learning

using  the previous weight components from the inputkidden  units to the output units. In

equation (3), w~~ can be viewed as a best weight component in a single  dimension from a

hidden unit n+] to output units. However the perception learning technique may provide



a best weight set in multiple dimensions. From this evident, cascade correlation is one

among in powerful software based learning algorithms.

e Cascade Error Projection:—

Recall equation (3):

~gf(n)ff(n+ 1)

p=)

In order to obtain the maximum reduction of energy (AE), we build the objective function

(new energy function) @ with the known target S: as follows:

@(n+l)= ’j{ f/’(n+l)-e~}2
p=]

The weights set Wi,, (n + 1) are the variable parameters of function f~(n + 1) where

@(n+l ) is to be minimized using a gradient descent technique.

The proposed learning algorithm CEP [Duong, 9s] is more practical to implemented in

hardware (low quantization, less learning, simple design, and fast). Also from the theory,

it is seen to be feasible to use the conjugate gradient technique, or even better to use

Newton’s second order approach, to get a better match between ~ E:(n) and f$(n + 1)
0=]

[Battiti, 92]. However, the goal of our present analysis is to select a learning algorithm that

best satisfies the given constraints.

The weight set Wi~ (n + 1) can be obtained directly from the affine space by using the

pseudo-inverse technique, which has been thoroughly studied [Haykin 1991]. However,

in our approach, we are interested in a non-linear solution space in which the solution



weight  set can be obtained directly from a learning technique using analog/digital

hardware. This learning approach offers a better solution from both a theoretical and

implementable point of view. First, the solution which is obtained in the non-linear

space is always better than a solution in linear space if obtained. Second, it is hard to

solve a singular-valued decomposition problem using a linear hardware network, even

though the solution is deterministically  defined, and the cost of the complicated

hardware required by the network may exceed the available resources.

IV. SIMULATION

The problems that are simulated in this paper are 5- to 8-bit parity problems for which

(1) there is no limited weight quantization  (The weight resolution is the same as the

floating point machine which is about 32-bit  for floating point or 64-bit  for double

precision); and, (2) the limited weight quantization  is from 3-to 6-bits. The details of

the simulation can be found [Duong,  9s, Duong et al. 96]
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Figure 3: The chart shows CEP learning capability for 5- to 8-bit parity
problems using round-off technique. x axis represents limited weight
quantization  (3-6 and 64-bit) and y axis shows the resulting number of
hidden units (limited to 20). Each ‘hidden unit has 100 epoch
As shown, the lager number of hidden units compensate for
weight resolution.
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V. Conclusions

In this paper, we have shown that C13P is feasible for both a software- and a hardware-

based learning algorithm. From this analysis, the way CC works can be understood in

depth. Moreover, the

learning architecture,

theoretical analysis provides us with the general framework of the

and the particular learning algorithm can be independently studied

for its suitability in a given application associated with some constraint for each problem.

(For example, in the hardware approach CEP is most advantageous, and for software,

Covariant  or Newton’s second order method is more advantages).
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Appendk  A:

The energy function of the network is defined as

Assume that the network currently has n hidden units, and that the energy  no longer

decreases with any search technique (gradient descent search, or exhausted search, etc.).

A new hidden unit is now added to the network. We expect that

E(n +1)< E(n)

This is equivalent to

Expanding and rearranging, we have

f{netf + Whoft(n + 1)] = j(net~) + f’(net~)whof/(tz  + 1) (ii)

From (i) and (ii), it can be shown that



p=j  0=1

with f ‘(net;) = f‘~

or

18


